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 A B S T R A C T

Topology optimization (TO) has been extensively applied in various domains, including robotics, equipment 
manufacturing, household products, and civil engineering, enhancing the performance of structural designs. 
However, TO-designed structures often lack adaptability to human preference despite high physical perfor-
mance. Trained extensively on human knowledge, large visual–language models (LVLM) exhibit a strong 
ability to understand human intent and generate satisfactory designs efficiently. In this paper, a large visual–
language model-guided topology optimization (LMTO) approach is proposed to automatically generate and 
edit efficient structural designs according to concepts. By integrating the TO into the large model knowledge 
space through a UDF-Weighting block, LMTO can optimize performance in the direction of human preference. 
Experimental results show that, despite significant variations in appearance, the performance of the designs 
remains comparable or superior to those obtained by the BESO method, indicating the effectiveness of our 
approach in exploring the joint space. Our method can yield diverse designs from the same prompt and is 
well-adapted to 2D and 3D cases, highlighting its effectiveness and practicality.
1. Introduction

How to build a chair shaped like a penguin or an avocado? What 
about a Gothic-style bridge? Great designs typically begin with a sim-
ple concept and evolve into tangible objects. Computer-aided design 
(CAD) software packages, such as SolidWorks, Catia, and Creo, are 
traditionally employed to address geometric shape modeling. In ad-
dition, structural performance analysis is handled by computer-aided 
engineering (CAE) software packages, namely ANSYS, Abaqus, and 
Nastran. However, translating abstract concepts into feasible designs 
remains a significant challenge for artists and engineers [1]. This 
challenge is multifaceted: First of all, designers require extensive time 
to accumulate experience and inspiration to produce creative designs. 
In the second place, due to the different mathematical representations 
in CAD and CAE software packages, designers must coordinate design 
intent with physical performance across platforms. A data-driven de-
sign approach, aligning physical performance with human preferences, 
should be proposed to overcome these difficulties.

Topology optimization (TO) is a numerical method used to deter-
mine the optimal material layout within a given design domain [2], 
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extensively proven to create lightweight, high-performance structures 
in various fields, such as aircraft engineering [3,4], architectural de-
sign [5,6], and furniture manufacturing [7,8]. There are quite a few 
TO techniques, the most prevalent of which are the Solid Isotropic 
Material with Penalization (SIMP) [9,10], the level set (LSM) [11,12], 
and the Evolutionary Structural Optimization (ESO) [13,14] method. 
Initially, ESO allowed only material removal, requiring an oversized 
initial design domain and often leading to local optima. To address this 
issue, Quein et al. introduced a bi-directional ESO (BESO) approach, 
enabling both material removal and addition [14]. Huang et al. de-
veloped a soft element removal method to enhance convergence in 
stiffness optimization problems and further discussed various BESO 
applications [15]. Early studies mainly focused on optimizing physical 
performance, while, in recent years, complex design requirements and 
comprehensive knowledge have been introduced into TO designs. For 
example, specific reference textures or geometrical patterns have been 
employed as guidance to modify TO design styles [16–18]. More-
over, additional constraints related to the design domain [19,20], 
material density distribution [21], and sensitivity [22,23] have been 
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incorporated into BESO within a generative structural design, thereby 
expanding the design space available to designers. 

The rapid advancement of artificial intelligence has profoundly 
transformed the engineering fields [24,25]. In particular, the introduc-
tion of generative models [26–28] and reinforcement learning [29] into 
TO has enabled the direct fabrication of structures generated through 
generative and conceptual designs [30,31]. The diffusion model is one 
of the most promising generative models, and Topodiff [32] explores 
the beam design space with a conditional diffusion model. However, 
the application of these advanced models is often constrained by the 
limited scope of available datasets, typically restricting their use to 
specific categories, such as wheel and MBB beam designs. Deep learning 
features are also utilized to modulate the outcomes of TO designs. For 
instance, Vulimiri and colleagues have attempted to merge a reference 
image with an optimized structure using a pre-trained neural network, 
to enhance the design’s aesthetic [33]. Similarly, Zhang et al. developed 
a machine learning-assisted TO method (MLATO) tailored to architec-
tural designs incorporating artistic elements [34]. Impressive results of 
image-influenced structures have also been proposed [17,18,34]. How-
ever, due to the limited information within a single image, realizing 
substantial designs that fulfill the extensive demands of designers is still 
challenging.

In recent years, large models such as ChatGPT [35] have suc-
cessfully understood human intents and generated high-quality an-
swers, profoundly impacting human–machine interaction. Large visual–
language models such as OpenAI’s DALL-E 2 [36], Google Brain’s 
Imagen [37], and StabilityAI’s Stable Diffusion [38] began to ap-
proach the quality of real photographs and introduce novel methods for 
human–computer interaction via text guidance. These methodologies 
are also being extended to 3D datasets, enabling users to create 3D rep-
resentations of tables and chairs in mesh and point cloud formats with 
simple prompts [39–41]. These developments highlight the potential of 
AI-driven methodologies in 3D modeling and structural design.

Leveraging the implicit knowledge embedded in large-scale models 
to guide structural optimization has emerged as a feasible strategy for 
enhancing the diversity of structural designs. Picard et al. employed 
GPTv4 to scrutinize TO designs rendered through CAD, underscoring 
the significant constraint posed by the absence of explicit accuracy in 
such endeavors [42]. Zhong et al. leveraged the text encoder CLIP to 
generate aesthetically pleasing beam structures, elucidating the chal-
lenges of attaining specific volume fractions within these designs [43]. 
Bastek and Jan-Hendrik utilized video diffusion models integrated with 
finite element simulations (FEM) for inverse structural design, generat-
ing periodic structural materials with nonlinear deformation and stress 
responses under compression in the large-strain regime [44]. Although 
these models leverage knowledge extracted from large models, they 
cannot achieve local minima in performance owing to constraints im-
posed by the statistically-based inference mechanisms. Wei Zhang et al. 
proposed a multi-stage optimization method that integrates the TO with 
latent diffusion models, enhancing the performance and computational 
efficiency of the TO [45]. As several TO steps are employed in the 
second stage to enhance performance, the final design escapes from 
local minima in performance.

In this study, we introduce LMTO, a novel hybrid model that inte-
grates conventional TO with LVLM, aiming to automatically generate 
efficient structural designs that align with human preferences. The 
knowledge priors embedded in the large model enrich the diversity 
of final designs. LMTO facilitates the manipulation of style and shape 
in final designs, making it an innovative tool for conceptual design 
tasks. Within LMTO, TO procedures are guided by an LVLM incorporat-
ing Unsigned Distance Field Weighting (UDF-Weighting), enabling the 
design to evolve from preference-optimal toward performance-optimal 
configurations. (Fig.  1) Our approach is suitable for generative and 
editing tasks across 2D and 3D scenarios. By bridging LVLM and TO 
domains, our methodology enables inexpert designers to produce aes-
thetically pleasing, high-performance structural designs, ranging from 
coarse conceptualizations to refined iterations.
2 
The remainder of this paper is organized as follows. Sections 2 and
3 present the theoretical foundations of the Soft-Kill BESO method and 
the Latent Diffusion Model, respectively. Next, Section 4 describes the 
implementation of the proposed LMTO framework. Specifically, we first 
introduce the overall workflow of the LMTO methodology, followed 
by individual explanations of the LVLM block and the UDF-Weighting 
module. Afterwards, Section 5 provides experimental validation for the 
LMTO approach. We begin with a Gothic bridge case study to illus-
trate the general effectiveness of our method in achieving both design 
diversity and high performance. To further assess its scalability and 
adaptability, two distinct design tasks are investigated: a star tracker’s 
bracket, which emphasizes structural performance, and a chair design, 
which prioritizes aesthetic diversity and user preference. Additionally, 
compression experiments are conducted to evaluate the manufactura-
bility of the resulting designs. Then, Section 6 shows the limitations. 
Finally, Section 7 concludes the paper and outlines potential directions 
for future research.

2. Soft-Kill BESO method

Soft-Kill BESO is an advanced TO method designed to improve 
material distribution in structural design by iteratively removing and 
adding material based on sensitivity analysis. As opposed to, tradi-
tional hard-kill approaches that abruptly remove material elements, 
the Soft-Kill strategy gradually adjusts material properties, ensuring 
a more stable and efficient convergence process. This method is par-
ticularly effective in handling complex optimization problems where 
a smooth transition in material distribution is crucial for achieving 
high-performance structures. Regarding Soft-Kill BESO [15,22], the 
formulation of optimization problem considering maximum stiffness 
subject to a volume constraint is expressed as follows:

min ∶ 𝐶 = 1
2
𝑈𝑈𝑈𝑇𝐾𝐾𝐾𝑈𝑈𝑈

s.t. ∶ 𝑉 ∗ =
𝑁
∑

𝑖=1
𝑣𝑖𝜌𝑖

𝜌𝑖 = 𝜌min or 1
where 𝐶, 𝐾𝐾𝐾, 𝑈𝑈𝑈 , 𝑉 ∗, 𝑣𝑖 and 𝑉  denote the total compliance of the 
design (serving as an inverse measure of structural stiffness), the global 
stiffness matrix, the displacement vector, the volume of the 𝑖th element, 
and the total volume of design space, respectively. A smaller volume 
ratio 𝑉 ∗∕𝑉  implies a more efficient use of material in achieving the 
desired structural functionality. The design domain is discretized into 
𝑁 elements, each of which has a design variable 𝜌𝑖 that specifies 
whether the element is solid (𝜌𝑖 = 1) or void (𝜌𝑖 = 𝜌𝑚𝑖𝑛 = 0.001).

To ensure that each element closely approximates a solid or void 
state, the material model for structural elements is defined as:
𝐸(𝜌𝑖)𝑘 = 𝜌𝑝𝑖𝐸0

where 𝐸(𝜌𝑖)𝑘, 𝐸0 and 𝑝 donate Young’s modulus of 𝑖th structural 
element at the 𝑘th iteration, the basic Young’s modulus of structural 
elements, and the penalty exponent which is considered 𝑝 = 3 in the 
present work, respectively. Additionally, the TO progresses based on 
the relative ranking of the sensitivity numbers 𝑑𝑐𝑖 which is typically 
defined as follows: 

𝑑𝑐𝑖 = −1
𝑝
𝜕𝐶
𝜕𝑥𝑖

=

⎧

⎪

⎨

⎪

⎩

1
2𝑢𝑢𝑢

𝑇
𝑖 𝑘𝑘𝑘𝑖𝑢𝑢𝑢𝑖,  when 𝜌𝑖 = 1

𝜌𝑝−1min
2 𝑢𝑢𝑢𝑇𝑖 𝑘𝑘𝑘𝑖𝑢𝑢𝑢𝑖,  when 𝜌𝑖 = 𝜌min

(1)

where 𝑢𝑢𝑢𝑖 and 𝑘𝑘𝑘𝑖 denote the elemental displacement vector and the 
elemental stiffness matrix, respectively.

To mitigate checkerboarding and mesh dependency issues, a con-
volution filter is applied to the sensitivity numbers 𝑑𝑐𝑖 as follows: 

̃𝑑𝑐𝑖 =

∑𝑁
𝑗=1(𝑟𝑚𝑖𝑛 − 𝑟𝑖𝑗 )𝑑𝑐𝑖
∑𝑁 (2)
𝑗=1(𝑟𝑚𝑖𝑛 − 𝑟𝑖𝑗 )
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Fig. 1. Optimization trajectory of TO design, AI design, and LMTO design. TO is a physical performance optimization process, and the final designs are usually located at the 
boundary of the design space. AI design is a resampling process, and the final designs are located near the boundary. LMTO can generate designs with preference and performance 
by the guidance of UDF-Weighting.
where ̃𝑑𝑐𝑖, 𝑟𝑚𝑖𝑛 and 𝑟𝑖𝑗 denote the filtered sensitivity number, the filter 
radius, and the distance between the centers of elements 𝑖 and 𝑗.

To enhance the convergence of the BESO technique, a moving 
average of historical sensitivity numbers is employed as follows:

̂𝑑𝑐𝑖 =
𝑑𝑐𝑘𝑖 + 𝑑𝑐𝑘+1𝑖

2

where ̂𝑑𝑐𝑖 is the averaged sensitivity number. Structural elements are 
dynamically added or removed based on the sensitivity threshold in 
each iteration to align the current volume 𝑉 𝑘 closely with the target 
volume 𝑉 ∗. Then, the next iteration target volume 𝑉 𝑘+1 needs to be 
updated before elements are removed from or added to the current 
design:

𝑉 𝑘+1 = 𝑉 𝑘(1 ± 𝐸𝑅)

where 𝑉 𝑘 and 𝐸𝑅 denote the current volume and the evolutionary 
volume ratio, respectively. Finally, the bisection method is used to add 
or remove elements based on ̂𝑑𝑐𝑖, and the iteration loop stops once the 
following convergence criterion is satisfied.
∣
∑𝑀

𝑚=1(𝐶𝑘−𝑚+1 − 𝐶𝑘−𝑚−𝑚−1) ∣
∑𝑀

𝑚=1 𝐶𝑘−𝑚+1
≤ 𝜏

The sliding window length is 𝑀 = 5, and the allowable convergence 
error is 𝜏 = 0.001.

3. Latent diffusion model

The Latent Diffusion Model (LDM) [38] is a generative model that 
synthesizes images by progressively denoising representations in a 
lower-dimensional latent space. In contrast to conventional diffusion 
models that perform denoising directly in the high-dimensional pixel 
space, LDMs leverage a lower-dimensional latent space, significantly re-
ducing computational complexity while maintaining high-quality out-
puts.

To learn a probabilistic generative process in a lower-dimensional 
latent space, LDM first trains an encoder and a decoder, which trans-
form the high-dimensional data into a compact latent representation. 
Subsequently, a diffusion model [46] is trained to approximate the data 
distribution within this latent space.

A diffusion model consists of both forward and backward diffusion 
processes. The forward diffusion process is a Markov process that 
gradually adds noise to the data in a series of 𝑇  steps. Starting with an 
initial data sample 𝑥 , the process progressively transforms data into 
0

3 
pure noise. Using a series of conditional diffusion steps, the forward 
diffusion process can be defined as follows:
𝑥𝑡 =

√

1 − 𝛽𝑡𝑥𝑡−1 + 𝛽𝑡𝜖𝑡

where 𝛽𝑡 and 𝜖𝑡 denote the variance schedule (controlling the amount of 
noise added at each time step) and a Gaussian distribution with  (0, 1).

The backward process aims to reverse the noise corruption process, 
in which a neural network learns noise 𝜖𝜃 . It starts from pure noise 
𝑥𝑇 ∈  (0, 1) and recovers the data 𝑥0 through a series of 𝑇  steps. The 
backward process is defined as follows:

𝑥𝑡−1 =
1

√

𝛼𝑡
(𝑥𝑡 −

1 − 𝛼𝑡
√

1 − �̄�𝑡
𝜖𝜃(𝑥𝑡, 𝑡)) + 𝜎𝑡𝜖

𝛼𝑡 = 1 − 𝛽𝑡

�̄�𝑡 =
𝑡

∏

𝑖=1
𝛼𝑖

where 𝜖 and 𝜎𝑡 denote a normal distribution (the mean and variance 
of which, in turn, equal 0 and 1) and standard deviation of the noise 
(added at time step 𝑡), respectively.

LDM [38] is a large-scale visual–language model trained on LAION-
5B, demonstrating a remarkable ability to comprehend human design 
intentions, particularly architectural designs and furniture products.

4. Proposed method

4.1. Overview of LMTO

Ensuring manufacturability while preserving human preferences in 
structural design is a significant challenge arising from two primary fac-
tors. First, human preferences often conflict with high-performance de-
signs, and accommodating these preferences may come at the expense 
of substantial performance. Second, optimization algorithms typically 
struggle to distinguish between preference- and performance-related 
features, which can result in the unintended removal of critical pref-
erence features. Consequently, the final design may deviate from the 
intended-design objectives, undermining its alignment with human 
expectations. Previous studies focus on aligning the preference prompt 
with structural features and embedding them into the same latent 
space [43]. Their methods impose a high requirement on the quality 
of the latent space. It is important to note that once the boundary 
conditions are defined, most manufacturable structural designs incline 
to be closely aligned with the optimized TO design. Accordingly, the 
final design can be decomposed into a combination of the designs 
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Fig. 2. Overview of LMTO framework. The LVLM Design Block is used to generate a human-preference design according to the conceptual prompt. The Performance Optimization 
Block is used to optimize the physical performance of the whole design. A satisfactory design can be generated by balancing human preference and performance with UDF-Weighting.
𝑥𝑥

𝑥𝑥

𝜌

based on the TO and the LVLM. This relationship can be formulated 
as follows: 
𝑥 = �̄�𝑥𝑥 + 𝛴𝑁

𝑖=1(𝛼𝑖(�̃�𝑥𝑥(𝐶𝑖) − �̄�𝑥𝑥)) (3)

Here, �̄�𝑥𝑥 and �̃�𝑥𝑥(𝐶𝑖) represent the optimized TO design and LVLM 
design under human preference condition 𝐶𝑖, respectively. By integrat-
ing LVLM design feature sets into TO designs, LMTO achieves high-
performance design while ensuring alignment with the design-intended 
objectives.

As illustrated in Fig.  2, the LMTO consists of three main modules. 
In the LVLM design block, a coarse conceptual structure design is gen-
erated according to users’ prompts. Given that these LVLMs encompass 
extensive human knowledge, users can utilize the rich design space to 
support structural design and improvement. It is worth noting that the 
prompt can be an entity or even a concept. For instance, Figs.  9 and 5 
show the entity prompt ‘penguin chair’ and the concept prompt ‘Gothic 
bridge’, respectively. In this manner, LMTO can control shape and style 
using a unified approach.

After the LVLM design block, the coarse conceptual structural design 
is transformed into an unsigned distance field (UDF) and will subse-
quently participate in the UDF-Weighting operation. By introducing 
UDF-Weighting to the TO process, the satisfactory design is as varied as 
the LVLM designs and as efficient as conventional TO designs. For de-
tailed formulations on performance optimization, the reader is referred 
to SP-BESO [22]. It should be noted that the LVLM block and the UDF-
Weighting block are executed only once a process, their computational 
cost for inference is negligible. In addition, the complexity of the 
Performance Optimization block is approximately equivalent to that of 
the BESO algorithm. Therefore, the overall computational complexity 
of the proposed method is slightly higher than that of BESO.

By leveraging prompts and UDF-Weighting, satisfactory designs can 
be generated within the confluence of the expansive design space of 
the large visual–language model and the physical high-performance 
𝜌

4 
TO space. In this context, although distinct prompts contribute to 
increased diversity and aesthetics of designs, UDF-Weighting governs 
the performance characteristics.

4.2. LVLM block for optimized structure augmentation

The key idea of the LVLM block is to generate human preference 
features that guide the subsequent performance optimization block. In 
this regard, output images produced by image generative models can be 
treated as a combination of high-level features. To this end, it is initially 
assumed that TO inherently lacks human preferences. Therefore, the 
preference information related to the prompt can be represented as 
�̃�(𝐶𝑖)−�̄�𝑥𝑥, where �̃�𝑥𝑥(𝐶𝑖) and �̄�𝑥𝑥 denote LVLM raw design under condition in 
𝐶𝑖 and the TO design. This assumption is plausible because the results 
produced by TO are completely physical-principle-driven and free from 
prior knowledge or human-imposed biases.

The TO design is augmented using the general knowledge in LVLM. 
Indeed, to ensure that the general model’s semantic understanding 
capability in LVLM is not compromised, ControlNet [47] is employed 
here to generate preference features related to the TO design (see the 
LVLM architecture in Fig.  3). It should be noted that the fine-tuned 
dataset contains 2000 BESO design results with different boundary 
conditions, and AdamW is employed as the optimizer. The feature 
conversion process can be formulated as follows: 
𝑥𝑛+1 = 𝐹 (𝑥𝑥𝑥𝑛;𝜃𝜃𝜃) +𝑍(𝐹 (𝑥𝑥𝑥𝑛 +𝑍(𝜌𝜌𝜌;𝜃𝜃𝜃𝑧1);𝜃𝜃𝜃𝜌);𝜃𝜃𝜃𝑧2) (4)

where, the parameter 𝐹  represents a neural network block that trans-
forms input feature maps from 𝑥𝑥𝑥𝑛 layer to 𝑥𝑥𝑥𝑛+1 layer. The parameters 𝜃𝜃𝜃
are pre-trained and remain fixed during training, whereas the param-
eters 𝜃𝜃𝜃𝜌 are not frozen and continue to be updated. The parameter 𝑍
refers to 1 × 1 convolution layer called ‘‘zero convolution’’, which is 
employed to fine-tune the large visual–language model. The parameter 
𝜌 is the density distribution from TO. By introducing the density 
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Fig. 3. Architecture of LVLM block framework. A pre-trained LVLM is on the left, and a fine-tuned ControlNet is employed to map the prompt to the TO design space according 
to the general knowledge in the LVLM.
distribution to a large visual–language model, our approach can explore 
designs within the coupled space of high-performance and general 
designs.

After the coupled space is constructed, the prompt is mapped to 
the latent space through CLIP.  The coarse conceptualization design, 
generated through the diffusion process, is expressed as follows: 

𝑥𝑡−1 =
√

𝛼𝑡−1

(

𝑥𝑥𝑥𝑡 −
√

1 − 𝛼𝑡𝜖𝑡𝜃(𝑥𝑥𝑥𝑡, 𝑝𝑝𝑝)
√

𝛼𝑡

)

+
√

1 − 𝛼𝑡−1𝜖
𝑡
𝜃(𝑥𝑥𝑥𝑡, 𝑝𝑝𝑝), 𝑡 = 𝑇 ,… , 1

(5)

𝑥𝑥𝑥𝑡 and 𝑥𝑥𝑥𝑡+1 are samples in different diffusion time steps. 𝛼𝑡 and 
𝛼𝑡−1 control the noise scaling during the diffusion process. Also, 𝜖𝑡𝜃 and 
𝑝 denote the noise predicted by a neural network at the time step 𝑡
and the embedding features based on the prompt, respectively. Fig.  5b 
shows the density distribution of coarse conceptual designs in which the 
density distribution of materials changes as 𝑥𝑥𝑥0 varies with the random 
seed, 𝑅. The designs demonstrate the potential of the LVLM to generate 
various designs, each of which exhibits aesthetic characteristics that 
align with the semantics of the input prompt.

4.3. UDF-weighting block for high-performance structure generation

The UDF-Weighting block generates a weighted compliance sensi-
tivity 𝑑𝑐 based on Eq. (1), according to the coarse conceptual design 
produced by the LVLM block. Then, the performance optimization 
block utilizes an iterative mechanism inside BESO to identify and select 
features with the least performance degradation from the feature set 
generated by the LVLM.

Unsigned Distance Field (UDF) is widely used in computer vision for 
shape registration and model fitting [48]. In this paper, UDF measures 
the minimum distance from each point in the design space to the 
boundary of the coarse conceptualization design �̃�, as depicted in Fig.  4. 
Assume the position of point 𝑖 in the design area is 𝑓𝑓𝑓 𝑖 and the position 
of point 𝑗 on the boundary of coarse conceptualization design is 𝑔𝑔𝑔𝑗 . The 
minimum distance to the boundary of the conceptualization design for 
each point 𝑖 can be represented as follows: 
𝑚𝑖𝑛𝑑𝑖𝑠𝑖 = min

𝑗∈R
‖𝑓𝑓𝑓 𝑖 − 𝑔𝑔𝑔𝑗‖ (6)

The UDF value for point 𝑖 equals to the following statement: 
𝑈𝐷𝐹𝑖 = 1∕(𝑚𝑖𝑛𝑑𝑖𝑠𝑖 + 1) (7)

Next, we introduce 𝑎𝑙𝑝ℎ𝑎 — the scalar factor used in UDF-Weighting 
— which serves to characterize the similarity between LMTO and TO 
designs. UDF-Weighting is formulated as follows:
𝑤 = max(10−𝑎𝑙𝑝ℎ𝑎 − 10−𝑎𝑙𝑝ℎ𝑎𝑚𝑖𝑛 , 0) (8)
𝑈𝐷𝐹

5 
̌𝑑𝑐𝑖 = (1 −𝑤𝑈𝐷𝐹 ) × 𝑑𝑐𝑖 +𝑤𝑈𝐷𝐹 × 𝑈𝐷𝐹𝑖 (9)

To ensure a low compliance of the satisfactory design, the effect 
of UDF should be small. As a result, 𝑤𝑈𝐷𝐹  is defined to rescale the 
UDF value. It should be noted that ̌𝑑𝑐𝑖 is the weighted 𝑑𝑐𝑖 containing 
balanced information between the TO and the LVLM designs. Addition-
ally, 𝑎𝑙𝑝ℎ𝑎 lies between 0 and 𝑎𝑙𝑝ℎ𝑎𝑚𝑎𝑥, [0, 𝑎𝑙𝑝ℎ𝑎𝑚𝑎𝑥], and it is sensible 
that the bigger the alpha, the more similar the satisfactory design to the 
TO design. With this in mind, we consider 9 for 𝑎𝑙𝑝ℎ𝑎𝑚𝑎𝑥 in this study. 
Hence, considering 9 for 𝑎𝑙𝑝ℎ𝑎, the satisfactory design degenerates into 
a Soft-Kill BESO design. Due to the utilization of UDF-Weighting, a 
connection has been established between the stiffness of the TO design 
and the aesthetic features of LVLM design. This connection enables 
the development of a satisfactory structural design through a balance 
between stiffness and aesthetics. Then, Eq. (2) is applied to 𝑑𝑐 to 
smooth the optimization process and improve the quality of the final 
designs. This step corresponds to the ‘‘Filter&Optimization’’ module 
shown in Fig.  2.

5. Results and discussion

5.1. 2D Gothic bridge generation

LVLM plays a crucial role in ensuring the diversity of the final 
designs in LMTO processes. It enables the TO design space to move be-
yond the constraints of domain-specific datasets and transition toward a 
generalized representation of design patterns. In this study, ‘‘the Gothic 
style bridge’’ is studied as an example of abstract conceptual structural 
design. To demonstrate the adaptability of LMTO to different bound-
ary conditions, two types of boundary conditions, namely boundary 
condition 1 (BC1) and boundary condition 2 (BC2), are employed, as 
illustrated in Fig.  5a and b, respectively. The design region is discretized 
using 400 × 100 linear quadrilateral finite elements. The design volume 
is 𝑉 ∗ = 0.5𝑉 , (where 𝑉  denotes the volume of the design domain), and 
the filter radius is 1.5 times as long as the element size. The experiments 
are implemented on a Dell Workstation (Processor: Intel(R) Xeon(R) 
Gold 5218 CPU @ 2.30 GHz, GPU: NVIDIA GeForce RTX 3090). Fig. 
5c and d show the diverse bridge designs generated through LVLM 
based on BC1 and BC2, respectively. Here, LVLM refers to a pre-trained 
ControlNet [47], where the grayscale intensity of the generated images 
is analogous to the density distribution in structural design. Because 
ControlNet is trained on a broad dataset, it circumvents the issue of 
excessive dependence on the TO datasets observed in deep learning 
approaches. It is worth noting that although these designs are creative 
and conceptually similar to the TO designs, they exhibit comparatively 
lower physical performance.
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Fig. 4. UDF sketch map. Typical positions of 𝑓𝑓𝑓 𝑖 and 𝑔𝑔𝑔𝑗 in coarse conceptualization design. The blue line is the distance of 𝑚𝑖𝑛𝑑𝑖𝑠𝑖.
Fig. 5. Diverse bridge designs with LMTO and LVLM. (a) Boundary condition 1 (BC1) for bridge structural design. (b) Boundary condition 2 (BC2) for bridge structural design. 
(c) The LVLM bridge designs under BC1 using different random seeds 𝑅. (d) The LVLM designs under BC2 with different 𝑅. Although these LVLM designs indicate a high human 
preference, they exhibit low physical performance and are difficult to manufacture for spatial discontinuity. (e) The TO design under BC2, which is high physical performance. (f) 
The LMTO design under high-performance requirements. (g) The LMTO designs without high-performance requirements. The LMTO designs combine high performance with design 
diversity.
The LMTO method enables structural designs to be adjusted accord-
ing to human preferences while maintaining excellent performance. 
Taking the designs under BC2 as an example, Fig.  5f shows the design 
6 
results obtained via LMTO. In contrast to the TO designs in Fig.  5e, 
which focus solely on performance, the LMTO designs incorporate 
elements from LVLM designs in Fig.  5d, leading to greater diversity. 
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Fig. 6. Physical performance of the LMTO approach compared with TO approach. (a) The relationship between 𝑎𝑙𝑝ℎ𝑎 and design compliance under BC1 in the LMTO. LMTO 
designs vary from high preference to high performance and can reach a balance point when 𝑎𝑙𝑝ℎ𝑎 = 3. (b) The compliance ratio distribution corresponds to 𝑎𝑙𝑝ℎ𝑎 among the LMTO 
designs under BC2. As 𝑎𝑙𝑝ℎ𝑎 grows, the median of the compliance ratio shifts below 1, indicating that designs with better performance than the TO designs become increasingly 
easier to find. (c) The distribution of the optimal compliance ratio as 𝑅 varies under different fixed boundary conditions. Regarding BC1 and BC2, the Q3 is less than 1, indicating 
that by selecting an appropriate 𝑎𝑙𝑝ℎ𝑎, 75% of the LMTO designs perform better than the BESO designs.
Furthermore, by adjusting the parameter 𝑎𝑙𝑝ℎ𝑎, users can enhance the 
emphasis on human preferences. For instance, the designs in Fig.  5g 
exhibit more innovation than those in Fig.  5f. Notably, despite the in-
creased innovation, the designs in Fig.  5f show almost no performance 
loss relative to Fig.  5e, achieving a balance between human preferences 
and high physical performance in structural design.

In the UDF-Weighting Block, 𝑎𝑙𝑝ℎ𝑎 is employed to balance physical 
performance and human preference, and the relative relationship is 
shown in Fig.  6a. When 𝑎𝑙𝑝ℎ𝑎 equals 0, the LMTO design degenerates 
into an LVLM design, characterized by low performance but with an 
appearance similar to that shown in Fig.  5c. When 𝑎𝑙𝑝ℎ𝑎 equals 9, the 
LMTO design degenerates into a TO (Soft-Kill BESO) design, resulting 
in optimal performance but lacking human preference information. As 
𝑎𝑙𝑝ℎ𝑎 increases, the physical performance gradually improves while 
human preferences diminish. 𝑎𝑙𝑝ℎ𝑎 approaches to 3 exhibits a balance 
between performance and preference.

It is noteworthy that certain results exhibit superior performance 
compared to Soft-Kill BESO. To investigate why LMTO designs outper-
form Soft-Kill BESO designs, we statistically analyzed 1158 randomly 
generated designs by varying the parameters, including 𝑎𝑙𝑝ℎ𝑎 and ran-
dom seed(𝑅) under BC1 and BC2. In Fig.  6b and c, violin plots present 
the performance distribution of LMTO designs, using the compliance 
ratio (CR) to evaluate the performance of the LMTO relative to the 
TO. The CR is defined as the ratio of the compliance of the LMTO 
design to that of the TO design under identical boundary conditions. 
If most of the CR distribution is below 1, it indicates that the LMTO 
design outperforms the TO design. In the violin plots of Fig.  6, the black 
box’s upper and lower edges represent the third  quartile (Q3) and the 
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first quartile (Q1), corresponding to 75% and 25%, respectively. The 
short white line within the black box indicates the median or 50%. 
The median below 1 signifies that in half of the random experiments, 
the LMTO design outperforms the TO design. The compliance ratio 
distribution corresponding to 𝑎𝑙𝑝ℎ𝑎 under BC2 is shown in Fig.  6b. It 
is crystal clear that as 𝑎𝑙𝑝ℎ𝑎 increases, the median of the distribution 
moves towards 1, aligning with the observation that higher alpha 
values correlate with better performance.

The compliance initially decreases and then increases as 𝑎𝑙𝑝ℎ𝑎
increases in Fig.  6a. Therefore, investigating the distribution of the 
minimum compliance with varying 𝑎𝑙𝑝ℎ𝑎 can illustrate the algorithm’s 
capability to find optimal solutions within the design space. In Fig. 
6c, each sample point represents the minimum relative compliance 
achieved by varying alpha alone (under certain constant conditions), 
indicating the maximum performance gain achievable through modifi-
cations to alpha. The distribution shown in the violin plot demonstrates 
that the third quartile (Q3) is below 1 under both BC1 and BC2. This 
distribution indicates that varying alpha yields a high probability of 
achieving values surpassing the Soft-Kill BESO performance, suggesting 
the effectiveness of the LMTO in exploring the design space.

In addition to analyzing the design space, Table  1 summarizes 
the optimal designs in performance produced by several mainstream 
methods. Design methods based on artificial intelligence generally 
rely on the TO datasets, making it difficult to surpass the perfor-
mance of conventional TO approaches. In contrast, LMTO enhances the 
search around local optima, increasing the likelihood of finding designs 
that simultaneously satisfy both performance requirements and human 
preferences.
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Fig. 7. LMTO 3D bridge designs and 3D-printed objects. (b) The yellow model represents manually edited UDF features employed to generate designs using the LMTO approach, 
which resemble a cheese-like structure with a uniform matrix of spherical voids. In the left column, the purple models illustrate structures refined using the LMTO optimization 
technique, while the green models depict structures optimized through the TO. (a) LMTO design with 𝑎𝑙𝑝ℎ𝑎 = 4. (c) Soft-Kill BESO design. (d) SIMP design. (e) LMTO design with 
𝑎𝑙𝑝ℎ𝑎 = 3. The compliance of the structures is ranked in ascending order from top to bottom. To provide a clearer view of the internal structure, a rectangular section has been 
excised from the upper left corner, indicated by a red box. In (c), (d), and (e), designs in the right column are the 3d-printed results of those in the left column.
Table 1
2D bridge performance between different methods under BC2.
 Volfrac E nu Compliance Compliance ratio 
 BESO 0.25 1.0 0.3 364029 1.000  
 LMTO 0.25 1.0 0.3 357702 0.98  
 MLATO 0.25 1.0 0.3 388421 1.067  
 Topodiff 0.25 1.0 0.3 372457 1.023  

5.2. 3D architecture design generation

The LMTO formulations can be seamlessly applied to 3D problems 
by merely replacing the 2D model with its 3D counterpart. For the 
3D scenario, the choice of LVLM is Shap-E [41], thereby naturally 
transforming 2D distance (from pixel to edge) into 3D distance (from 
point to surface) in UDF-Weighting. Similarly, 2D Soft-Kill BESO is 
replaced by 3D Soft-Kill BESO. As the 3D form of UDF-Weighting can 
traverse all positions in space and provide weighting for the TO model, 
the LMTO is a fully 3D voxel-based model other than treating 3D space 
as 2D slices for layer-by-layer optimization, which is the foundation for 
constructing 3D semantics.

Although most of bridge design research concentrates on 2D or 
pseudo-three-dimensional (pseudo-3D) systems, the realization of cer-
tain complex deformations and functionalities necessitates using 3D 
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space. To verify the control ability of LMTO over 3D structures and 
compare its performance with SIMP and Soft-Kill BESO methods, we 
manually modified UDF-Weighting to fill the structure with uniformly 
sized spherical voids in Fig.  7b. Based on this modification, we gener-
ated an LMTO bridge design in a discretized area of 80 × 480 × 160 
cells, with boundary conditions consistent with those of BC1.

The porous bridge design results from different methods are illus-
trated in the left column of Fig.  7, where each design displays distinct 
characteristics from one another. Specifically, the compliance of the 
structures is ranked in ascending order from top to bottom. The LMTO 
design in Fig.  7e retains the most human preferences compared with 
the SIMP design in Fig.  7d and with the Soft-Kill BESO design in Fig. 
7c. It is crystal clear that the LMTO design in Fig.  7e is filled with 
regularly arranged spherical voids from the cross-sectional view within 
the red box in the upper left corner. From a performance perspective, it 
achieves a compliance ratio of 1.061 compared to Soft-Kill BESO, which 
slightly outperforms SIMP design, the compliance ratio of which equals 
1.008. As previously mentioned, alpha can impact the performance of 
LMTO, so that the higher the 𝑎𝑙𝑝ℎ𝑎 in UDF-Weighting, the higher the 
preference in LMTO designs. Accordingly, setting 𝑎𝑙𝑝ℎ𝑎 = 4 results in 
a compliance ratio of 0.985 (see Fig.  7a) and the LMTO design that 
slightly outperforms Soft-Kill BESO. Relative 3D printed models of these 
design structures are listed in the right column of Fig.  7, which serves 
as evidence of the manufacturability of LMTO designs.
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Fig. 8. Performance of 𝑎𝑙𝑝ℎ𝑎 on 3D Star Tracker Bracket Designs. (a) The boundary condition for star tracker’s design. (b) The TO design with high performance. It is identical 
in shape to the LMTO design when 𝑎𝑙𝑝ℎ𝑎 = 9. (c) The LVLM design with prompt ‘‘octopus spaceship’’. This design represents human preference and is graphically identical to the 
LMTO design when 𝑎𝑙𝑝ℎ𝑎 = 0. (d) The relationship between 𝑎𝑙𝑝ℎ𝑎 and total compliance in the LMTO design. As 𝑎𝑙𝑝ℎ𝑎 increases, the LMTO design becomes less similar to the 
LVLM design while improving performance.
5.3. 3D spacecraft equipment design generation

Another 3D example is the appearance design of the star tracker. 
A star tracker is a device used to determine a spacecraft’s orientation 
by measuring the stars’ positions. In this device, the star tracker’s 
bracket is the core component that connects the satellite deck and the 
star tracker. Due to the high rigidity requirements of the star tracker 
bracket, the industry typically employs the TO methods for structural 
design. Traditionally, limitations in design techniques have made it 
a challenging task to alter the shape of the design. By integrating 
artificial intelligence with structural design, the LMTO can generate 
numerous designs that align with human preferences. In the current 
study, we present the structural design of a star tracker in the shape of 
an ‘‘octopus spaceship’’.

The design domain, whose boundary condition is provided in
Fig.  8a, is divided into a grid of 200 × 200 × 100 cells. The filter radius 
and the design volume are set 𝑟𝑚𝑖𝑛 = 5 and 𝑉 ∗ = 0.3𝑉 , respectively. 
Fig.  8d illustrates the curve of total compliance with respect to the 
parameter 𝑎𝑙𝑝ℎ𝑎, whose growth leads to enhancing the performance of 
the LMTO design. Conversely, the LMTO design progressively resembles 
the preferred ‘‘octopus spaceship’’ configuration as alpha decreases. 
These results illustrate the LMTO algorithm’s capability to achieve 
an optimal balance between aesthetic preferences and performance 
metrics in the design process.

5.4. 3D furniture design generation

Due to its ability to balance human preferences with mechani-
cal performance, our approach is also particularly suitable for the 
structural design of furniture, such as a penguin chair designed for 
aquariums. This 3D problem space is discretized by 80 × 80 × 80 linear 
hexahedral finite element mesh. The filter radius and the design volume 
9 
are set 𝑟𝑚𝑖𝑛 = 5 and 𝑉 ∗ = 0.2𝑉 , respectively. Different design results are 
shown in Fig.  9, and ‘a penguin’ is the given prompt for the LVLM. 
The outcomes show that LMTO fully preserves human preferences 
and generates a chair-functional design in the shape of a penguin. 
The modulation of performance by 𝑎𝑙𝑝ℎ𝑎 remains consistent with the 
2D Gothic bridge. As a result, the penguin-like appearance has been 
guaranteed, but the compliance ratio of performance is only 1.003. 
This result indicates that in a 3D context, the LMTO can construct 3D 
semantic information while maintaining excellent performance. More 
details are provided in Table  2.

A detailed comparison of 3D chair designs between the LMTO 
approach and a conventional method is presented in Table  2. The first 
column represents the design method. The second column describes 
the prompt used for the design. The Young’s modulus(E) and Poisson’s 
ratio(nu) are set to 1 and 0.3, respectively. If a local modification 
is made, the note ‘part’ should be appended to the prompt. When 
𝑎𝑙𝑝ℎ𝑎 is large, LMTO design can give conceptual designs with a little 
compliance increase compared with the TO designs. If 𝑎𝑙𝑝ℎ𝑎 decreases, 
the compliance grows giving a design with high human preference. This 
conclusion is suitable for both design generation and design editing.

The ability of the LMTO to reconcile structural performance with 
user-driven semantic preferences is rooted in its inherent mechanism 
of introducing void regions during the optimization process. This fact 
enables a spatially efficient allocation of material density within the 
design domain. (see Fig.  9c and d in which the cross-section reveals 
the presence of cavity features).

By manipulating UDF-Weighting, our approach can edit designs 
based on the LVLM designs or the TO designs. In cases where the 
designs are to be edited, manipulating the UDF-Weighting enables 
localized modifications to the final design outcomes (the details of 
editing the design of furniture are provided in Appendix  C). As the 
modification of structural designs can be executed semantically, this 
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Table 2
3D chair design performance among different design methods.
 Category Name 𝑎𝑙𝑝ℎ𝑎 Volfrac E nu Compliance Compliance ratio 
 TO (Soft-Kill BESO) Conventional chair 9 0.2 1.0 0.3 1.783 × 105 1.000  
 LMTO (generation) Penguin chair 2 0.2 1.0 0.3 2.091 × 105 1.173  
 LMTO (generation) Penguin chair 5 0.2 1.0 0.3 1.789 × 105 1.003  
 LMTO (generation) Avocado chair 5 0.2 1.0 0.3 1.789 × 105 1.003  
 LMTO (editing) Avocado chair (part) 5 0.2 1.0 0.3 1.798 × 105 1.008  
Fig. 9. Concrete design example of penguin chair. (a) Penguins generated by LVLM (Shap-E) with the prompt ‘‘a penguin’’. (b) The penguin chair design generated by LMTO with 
𝑎𝑙𝑝ℎ𝑎 = 2. (c) The penguin chair design generated by LMTO with 𝑎𝑙𝑝ℎ𝑎 = 5. (d) The chair design generated by the TO (Soft-Kill BESO) method. As 𝑎𝑙𝑝ℎ𝑎 increases, the compliance 
gradually decreases. The smaller the 𝑎𝑙𝑝ℎ𝑎 is, the more similar the LMTO and the LVLM designs are. The cavity structure inside the design contributes to low compliance in LMTO 
design, which can be seen from their cross-sections in (c) and (d).
approach significantly expands the dimensions of design exploration. 
To summarize, a satisfactory design can be constructed by combining 
the attributes from different sources while keeping compliance within 
acceptable limits.

5.5. CAE simulation and mechanical experiments

To validate the difference between the LMTO and Soft-Kill BESO 
in terms of physical performance, we 3D-printed the Gothic bridge 
design as shown in Fig.  10c. For the convenience of 3D printing, the 
design volume, the filter radius, and the boundary condition are set to 
𝑉 ∗ = 0.5𝑉 , 𝑟𝑚𝑖𝑛 = 5, and BC1, respectively. Regarding the parameter 
𝑎𝑙𝑝ℎ𝑎, 𝑎𝑙𝑝ℎ𝑎 = 5 and 𝑎𝑙𝑝ℎ𝑎 = 9 are assigned to the high-performance 
10 
LMTO design and the TO (Soft-Kill BESO) design, respectively. The 
results of the LMTO design are presented in Fig.  10a.

In the current model, simulation parameters such as Young’s modu-
lus and Poisson ratio are set to 1MPa and 0.3, respectively. The bottom 
of the model is bounded to a fixed plate, whose Young’s modulus 
and Poisson’s ratio are set to 2 × 105MPa and 0.3, respectively. The 
upper surface of the model undergoes a gradual parallel downward 
displacement of 5 mm. As illustrated in Fig.  10b, although the two 
designs have significantly different appearances, their energy distri-
bution is roughly similar after applying the force. Fig.  10f shows the 
numerical representation of displacement as a function of applied force, 
demonstrating that the performances of the two designs are very similar 
from a simulation perspective.
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Fig. 10. Simulation and compression test results of LMTO bridge design and TO bridge design. (a) The results of the LMTO and the TO designs where the alpha value is set to 
5 (top) and 9 (bottom), respectively. (b) ANSYS simulation results of strain energy. (c) 3D printed models. (d) Compression test (A metal block is placed on the top of the 3D 
printed model within the machine to ensure the uniform force distribution on the upper surface during testing). (e) Numerical results of the compression test. (f) Numerical results 
of Ansys simulation. The alignment of red and blue lines suggests little performance difference between the LMTO and the TO (Soft-Kill BESO) designs.
During the physical testing phase, a steel bar was placed on top of 
the printed bridge to ensure that the load was evenly distributed across 
bridge’s surface (see Fig.  10d). Experimental results are shown in Fig. 
10e, and empirical measurements indicate that, under the conditions 
of elastic deformation, the two design structures exhibit similar per-
formance. The lines in Fig.  10e are not perfectly straight, which may 
be attributed to inconsistencies in the 3D printing process. Comparing 
Fig.  10e and f, mechanical experiment trends are consistent with the 
simulation results. Constrained by the precision of the 3D printer, 
the parameters of the bridge design are narrowed in CAE simulations 
and mechanical experiments, resulting in validation outcomes slightly 
trailing those obtained through topology optimization. Nonetheless, the 
LMTO and BESO designs attain closely approximate physical perfor-
mance while simultaneously notably altering the aesthetic aspect, thus 
underscoring the method’s reliability in terms of physical functionality.

6. Limitations

It should be pointed out that the generative capability and mor-
phological diversity of the LMTO method are inherently constrained by 
the expressiveness and generalization capacity of the underlying large 
vision–language model. If the large vision–language model fails to ac-
curately interpret users’ intent or exhibits domain-specific limitations, 
11 
the resulting design outcomes may not meet expectations. Therefore, 
careful selection and evaluation of the LVLM are essential to ensure 
semantic fidelity and design feasibility. As research on large vision–
language models continues to progress, current limitations, such as 
insufficient coverage or inadequate semantic resolution, are expected 
to be progressively mitigated, further enhancing the applicability and 
robustness of the large vision–language model framework.

Although LMTO can achieve designs that satisfy both performance 
requirements and human preferences, its computational efficiency
could be further improved. For example, artificial intelligence tech-
niques could be employed to accelerate the finite element analysis 
process. Additionally, further research is needed to enhance the fine-
grained control of large-scale and complex models. These challenges 
will be addressed in future research to facilitate a fully integrated 
process from conceptual generation to final product manufacturing.

7. Conclusion

In the present work, a novel design approach integrated with a 
large visual–language model with the TO is proposed for conceptual 
design. By semantically decomposing structural designs within large 
models, the LMTO approach efficiently explores semantic features in 
the joint space of human preference and performance. A bridge is also 
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Fig. A.11. The network structure of ControlNet. (a) Stable Diffusion network trained on a large 2D dataset. (b) The additional ControlNet to modify Stable diffusion.
built using the TO to large models through UDF-Weighting, allowing 
for design outcomes that fully satisfy design boundary conditions.  Si-
multaneously, the method offers a diverse appearance based on human 
preferences, thus making the materialization of conceptual designs a 
reality.
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Appendix A. ControlNet network structure

ControlNet is an additional network that improves correlation be-
tween Stable Diffusion and the given condition. Stable Diffusion is a 
latent diffusion model trained on a large dataset containing enormous 
image information. Due to the high cost of fine-tuning all of the 
Stable Diffusion’s parameters, lightweight fine-tuning networks, such 
as ControlNet, have been proposed to reduce the conditioning control 
cost of the network. ControlNet structure is shown in Fig.  A.11. To 
reduce computing costs and preserve the universal information in the 
original Stable Diffusion, the parameters in the Stable Diffusion part are 
frozen. ControlNet part parameters are fine-tuned with the additional 
dataset. As zero convolution exists, the whole network degenerates to 
Stable Diffusion if no further information is added as a condition. The 
outputs show a high correlation with input conditions only if additional 
information is given as a condition.

In this paper, the version of Stable Diffusion and ControlNet are v1.5 
and v1.1. The prompt is ‘Gothic bridge’, and taking TO design as the 
condition yields the best quality for LVLM design. It is necessary to 
rescale the density to [0, 255] and repeat its result to generate an RGB 
image for two reasons: First of all, the TO design has a single channel 
density on a scale of [0, 1], and secondly, the input condition is a three-
channel RGB image. To improve the resolution of the output image, the 
input condition is padding to the shape of 512 × 512 × 3. Finally, after 
ControlNet, the output image is required to undergo padding removal, 
averaging of the third dimension, and rescaling to a range of [0,1]. 
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Fig. B.12. Shap-E network structure. Shap-E can transform the position of a space point (xyz) to density value (𝜎), point color (RGB), and its signed texture field (SDF) according 
to the information trained in the implicit MLP. Mesh can be reconstructed with this information by Marching Cubes. The implicit MLP is trained with 16k point cloud and 20 
RGBA images.
After these processes, the output image is transformed into the LVLM 
density design.

Appendix B. Shap-E network structure

Shap-E is an implicit neural representation (INR) trained on a 
dataset containing several million 3D assets. This INR can represent 
both meshes and neural radiance field (NeRF). The network of Shap-E 
is shown in Fig.  B.12. By pre-training 16k point cloud and 20 different 
view RGBA images in Shap-E, high-dimensional information is encoded 
into latent projection. The latent projection is then embedded in an 
implicit MLP. Given a point position (xyz) in the space, implicit MLP 
outputs the point density value (𝜎), the point color (RGB), and its 
signed texture field (SDF). An object mesh can be reconstructed with 
this information through Marching Cubes.

In the 3D conceptualization design ‘penguin chair’ and ‘avocado 
chair’ generation, the prompts are ‘penguin’ and ‘avocado chair’, re-
spectively. The prompt affects the resulting mesh through the attention 
block. After Marching Cubes, smooth meshes are produced. Then, the 
mesh is rescaled and translated to the center of the design space. In this 
step, we strive to align the symmetry axis of the design space as closely 
as possible with the symmetry axis of the mesh to ensure the aesthetic 
appeal of the final generated design.
13 
Appendix C. LMTO for 3D avocado chair feature editing

The LMTO algorithm can generate holistic designs that align with 
human preferences based on UDF-Weighting. By performing local
semantic edits on the UDF-Weighting, localized modifications within 
the overall design is possible.

The results of localized modifications and the Boundary conditions 
are shown in Figs.  C.13 and C.13a, respectively. Under the given 
prompt ‘‘avocado chair’’, Fig.  C.13e represents the TO design, optimized 
for maximum performance. At the same time, Fig.  C.13f represents 
the LVLM design, which reflects human aesthetic preferences. Addi-
tionally, Fig.  C.13g represents the LMTO design, effectively balancing 
performance with human preferences, and furthermore, Fig.  C.13c 
illustrates their UDF-Weighting. If the upper half of the UDF-Weighting 
in Fig.  C.13c is extracted and the bottom part is cut off, only semantic 
features from the top half will be converted to the final design from 
the LVLM design in Fig.  C.13h compared to Fig.  C.13g. To be exact, 
the round arm is similar to the LVLM design, while the bottom half 
part is the same as the TO design. In terms of performance, it has been 
observed that the compliance of both designs is nearly the same, while 
there are significant changes in their appearance (see Table  2). This 
result demonstrates the LMTO’s capability for localized 3D semantic 
modifications in structural design.
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Fig. C.13. Results for LMTO structure editing. (a) The boundary condition for 3D chair design. (e) TO chair designs under the boundary condition (a). (b) The process for 3D 
chair design generation in LVLM. (f) Chair designs generated by Shap-E with the prompt ‘avocado chair’. (c) UDF-Weighting generated according to (f). (g) The avocado chair 
design generated by LMTO according to UDF-Weighting in (c). (d) A new UDF-Weighting constructed in relation to (c) by removing the lower part of the features. (h) The avocado 
chair design generated by LMTO corresponding to UDF-Weighting in (d). From (g) to (h) the local spatial semantics were modified through the manipulation of UDF-Weighting. 
Despite the significant differences in appearance, the performance of both, in terms of compliance, remains nearly identical.
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Data will be made available on request.
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